
doi: 10.3390/catal7070200
Recently, many scientists have focused on the development of green industrial technology. However, the process of synthesizing vinyl chloride faces the problem of Hg pollution. Via a novel approach, we used two elements Mo and Ti to prepare an inexpensive and green binary transition metal nitride (BTMN) as the active ingredient in a catalyst with nano-sized particles and an excellent degree of activation, which was supported on activated carbon. When the Mo/Ti mole ratio was 3:1, the conversion of acetylene reached 89% and the selectivity exceeded 98.5%. The doping of Ti in Mo-based catalysts reduced the capacity of adsorption for acetylene and also increased the adsorption of hydrogen chloride. Most importantly, the performance of the BTMN excelled those of the individual transition metal nitrides, due to the synergistic activity between Mo and Ti. This will expand the new epoch of the employment of transition metal nitrides as catalysts in the hydrochlorination of acetylene reaction.
binary transition metal nitride; acetylene hydrochlorination
binary transition metal nitride; acetylene hydrochlorination
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
