
A linear transformation from vector space to another vector space can be represented as a matrix. This close relationship between the matrix and the linear transformation is helpful for the study of matrices. In this paper, the tensor is regarded as a generalization of the matrix from the viewpoint of the linear transformation instead of the quadratic form in matrix theory; we discuss some operations and present some definitions and theorems related to tensors. For example, we provide the definitions of the triangular form and the eigenvalue of a tensor, and the theorems of the tensor QR decomposition and the tensor singular value decomposition. Furthermore, we explain the significance of our definitions and their differences from existing definitions.
QR decomposition, singular value decomposition, QA1-939, eigenvalue, tensor; linear transformation; eigenvalue; QR decomposition; singular value decomposition, linear transformation, tensor, Mathematics
QR decomposition, singular value decomposition, QA1-939, eigenvalue, tensor; linear transformation; eigenvalue; QR decomposition; singular value decomposition, linear transformation, tensor, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
