
We show how to apply the well-known fixed-point approach in the study of the existence, uniqueness, and stability of solutions to some particular types of functional equations. Moreover, we also obtain the Ulam stability result for them. The functional equations that we consider can be used to explain various experiments in mathematical psychology and arise in a natural way in the stochastic approach to the processes of perception, learning, reasoning, and cognition.
fixed point, Ulam stability, QA1-939, stochastic functional equations, Mathematics, stochastic functional equations; mathematical psychology; Ulam stability; fixed point, mathematical psychology
fixed point, Ulam stability, QA1-939, stochastic functional equations, Mathematics, stochastic functional equations; mathematical psychology; Ulam stability; fixed point, mathematical psychology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
