
doi: 10.3390/app9163270
Clean energy and fuel storage is often required for both stationary and automotive applications. Some of the clean energy and fuel storage technologies currently under extensive research and development are hydrogen storage, direct electric storage, mechanical energy storage, solar-thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue thus serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure.
Technology, hydrogen energy storage, electrochemical energy storage, QH301-705.5, T, Physics, QC1-999, thermal energy storage, Engineering (General). Civil engineering (General), Chemistry, salt cavern energy storage, TA1-2040, Biology (General), QD1-999
Technology, hydrogen energy storage, electrochemical energy storage, QH301-705.5, T, Physics, QC1-999, thermal energy storage, Engineering (General). Civil engineering (General), Chemistry, salt cavern energy storage, TA1-2040, Biology (General), QD1-999
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
