Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

Application of Digital Twin in the Industry of Axial Hollow-Wall Pipes

Authors: Zeyuan Guo; Shaowei Hu; Wencan Jin; Yuxiao Ye; Changxi Shan;

Application of Digital Twin in the Industry of Axial Hollow-Wall Pipes

Abstract

With the increasing demand for automation in agriculture, more and more researchers are exploring the application of digital twin in agricultural production. However, existing studies have predominantly focused on enhancing resource utilization efficiency and improving irrigation control systems in agricultural production through the implementation of digital twins. Unfortunately, there is a noticeable research gap when it comes to applying digital twins specifically to buried water conveyance pipelines within an agricultural irrigation infrastructure. Focusing on the long-term performance requirements of buried pipelines in agricultural irrigation and drainage, this study established a digital twin system for the industry of axial hollow-wall pipes with an outer diameter of 200 mm, specifically designed for this field of operation. The system was used to optimize the end-forming process of axial hollow-wall pipes, resulting in improved leak tightness under internal pressure and angular deflection of the pipes. The study suggests that the most effective method for the end-forming process of axial hollow-wall pipes is to heat the pipe for 60 s at the ambient temperature of 15 °C, with heating temperatures of 225 °C on both the inner and outer sides. Additionally, preheating the stamping equipment to 70 °C and controlling the cooling temperature, during pipe detachment, to between 35 °C and 45 °C is recommended. In terms of the leak tightness under internal pressure and angular deviation, the study found that increasing the thickness of the protruding end of the sealing ring to 16 mm, and shortening the chamfer length to 20 mm, while maintaining the same slope, can enhance the sealing effectiveness of the pipeline interface. The implementation of the digital twin system improves the production efficiency of the hollow pipe production line during the end-forming process, resulting in a yield rate of the pipe of up to 95% for qualified products. Moreover, the system provides intelligent closed-loop feedback which ensures the long-term operation and maintenance of the pipelines, making it easier to identify problems and implement design improvements. By doing so, it contributes to ensuring the long-term stability of related agricultural production.

Related Organizations
Keywords

PVC-U, Technology, end-forming process, digital twin; agricultural irrigation; axial hollow-wall pipes; PVC-U; end-forming process, agricultural irrigation, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), axial hollow-wall pipes, Chemistry, digital twin, TA1-2040, Biology (General), QD1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold