
Aquaculture produces more than 122 million tons of fish globally. Among the several economically important species are the Serrasalmidae, which are valued for their nutritional and sensory characteristics. To meet the growing demand, there is a need for automation and accuracy of processes, at a lower cost. Convolutional neural networks (CNNs) are a viable alternative for automation, reducing human intervention, work time, errors, and production costs. Therefore, the objective of this work is to evaluate the efficacy of convolutional neural networks (CNNs) in counting round fish fingerlings (Serrasalmidae) at different densities using 390 color photographs in an illuminated environment. The photographs were submitted to two convolutional neural networks for object detection: one model was adapted from a pre-trained CNN and the other was an online platform based on AutoML. The metrics used for performance evaluation were precision (P), recall (R), accuracy (A), and F1-Score. In conclusion, convolutional neural networks (CNNs) are effective tools for detecting and counting fish. The pre-trained CNN demonstrated outstanding performance in identifying fish fingerlings, achieving accuracy, precision, and recall rates of 99% or higher, regardless of fish density. On the other hand, the AutoML exhibited reduced accuracy and recall rates as the number of fish increased.
aquaculture, QL1-991, neural network, Veterinary medicine, Communication, Internet of Things, SF600-1100, Zoology
aquaculture, QL1-991, neural network, Veterinary medicine, Communication, Internet of Things, SF600-1100, Zoology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
