Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agronomyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weed Strategy Considering the Weed Control Effect and Weed Control Uniformity with Microsprinkler Irrigation

Authors: Hui Wang; Wenpeng Shi; Qing Zha; Gang Ling; Wene Wang; Xiaotao Hu;

Weed Strategy Considering the Weed Control Effect and Weed Control Uniformity with Microsprinkler Irrigation

Abstract

Improper herbicide application without proper personnel protection (PPE) can be harmful. Herbicide application with microsprinkler irrigation reduces direct contact with herbicides with the benefits of being highly efficient, decreasing water and herbicide use, and using precise irrigation and concentration control during agricultural production. Therefore, to propose a reasonable strategy for applying microsprinkler irrigation, a laboratory test was conducted to study the water distribution characteristics, and different herbicide concentrations (1.5 g/L, 2.0 g/L, and 3.0 g/L) were used in a field irrigation experiment with polyethylene microsprinkler hoses. Wheat was selected as the test crop, and the effects of the different herbicide concentrations were compared and analyzed based on the weed control effect and weed control uniformity. The results showed that in comparison to other herbicide concentrations, a higher herbicide application concentration (3.0 g/L) did not have a better application effect. Application concentration and duration influenced each other and synergistically affected the application effect. The weed control effects of the herbicide concentrations at 1.5 g/L and 2.0 g/L were similar and had better application effects than those of the other concentrations. When using this approach, the specific herbicide concentration should be determined according to the crop and soil environmental conditions, and the application concentration and duration should be adjusted reasonably.

Related Organizations
Keywords

herbicide application, S, wheat, Agriculture, herbicide application; microsprinkler hose; wheat, microsprinkler hose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold