Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Plant S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Plant Science
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Plant Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Plant Science
Article . 2015
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Plant Science
Article . 2015 . Peer-reviewed
Data sources: Frontiers
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

G-protein Signaling Components GCR1 and GPA1 Mediate Responses to Multiple Abiotic Stresses in Arabidopsis

Authors: Navjyoti eChakraborty; Navneet eSingh; Kanwaljeet ekaur; Kanwaljeet ekaur; Nandula eRaghuram;

G-protein Signaling Components GCR1 and GPA1 Mediate Responses to Multiple Abiotic Stresses in Arabidopsis

Abstract

G-protein signaling components have been implicated in some individual stress responses in Arabidopsis, but have not been comprehensively evaluated at the genetic and biochemical level. Stress emerged as the largest functional category in our whole transcriptome analyses of knock-out mutants of GCR1 and/or GPA1 in Arabidopsis (Chakraborty et al., 2015a,b). This led us to ask whether G-protein signaling components offer converging points in the plant's response to multiple abiotic stresses. In order to test this hypothesis, we carried out detailed analysis of the abiotic stress category in the present study, which revealed 144 differentially expressed genes (DEGs), spanning a wide range of abiotic stresses, including heat, cold, salt, light stress etc. Only 10 of these DEGs are shared by all the three mutants, while the single mutants (GCR1/GPA1) shared more DEGs between themselves than with the double mutant (GCR1-GPA1). RT-qPCR validation of 28 of these genes spanning different stresses revealed identical regulation of the DEGs shared between the mutants. We also validated the effects of cold, heat and salt stresses in all the 3 mutants and WT on % germination, root and shoot length, relative water content, proline content, lipid peroxidation and activities of catalase, ascorbate peroxidase and superoxide dismutase. All the 3 mutants showed evidence of stress tolerance, especially to cold, followed by heat and salt, in terms of all the above parameters. This clearly shows the role of GCR1 and GPA1 in mediating the plant's response to multiple abiotic stresses for the first time, especially cold, heat and salt stresses. This also implies a role for classical G-protein signaling pathways in stress sensitivity in the normal plants of Arabidopsis. This is also the first genetic and biochemical evidence of abiotic stress tolerance rendered by knock-out mutation of GCR1 and/or GPA1. This suggests that G-protein signaling pathway could offer novel common targets for the development of tolerance/resistance to multiple abiotic stresses.

Keywords

abiotic stress, G-protein, Arabidopsis, Plant culture, Plant Science, SB1-1110, qPCR, GPA1, GCR1, enzyme assays, Enzyme Assays

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Green
gold