
Sepsis remains a difficult clinical challenge, since our understanding of its immunopathology is incomplete and no efficacious treatment currently exists. Its earlier stage results from an uncontrolled inflammatory response to bacteria while in the later stage disturbed immune response with immunodeficiency syndrome develops. More than a hundred of clinical trials have not provided an efficient therapy which could ascertain an improvement or cure. Recent advancements in immunobiology of bacterial viruses (phages) indicate that in addition to their well-known antibacterial action phages have potent immunomodulating properties. Those data along with preliminary observations in experimental animals and the clinic strongly suggest that clinical trials on the efficacy of phages in sepsis are urgently needed.
sepsis, application of phages, Immunology, phages, Immunologic diseases. Allergy, RC581-607, immunomodulation, immunodeficiency
sepsis, application of phages, Immunology, phages, Immunologic diseases. Allergy, RC581-607, immunomodulation, immunodeficiency
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
