<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plantation mapping is important for understanding deforestation and climate change. While most existing plantation products are created manually, in this paper we study an ensemble learning based framework for automatically mapping plantations in southern Kalimantan on a yearly scale using remote sensing data. We study the effectiveness of several components in this framework, including class aggregation, data sampling, learning model selection and post-processing, by comparing with multiple baselines. In addition, we analyze the quality of our plantation mapping product by visual examination of high resolution images. We also compare our method to existing manually labeled plantation datasets and show that our method can achieve a better balance of precision (i.e., user's accuracy) and recall (i.e., producer's accuracy).
Big Data, remote sensing, deep learning, deforestation, ensemble learning, plantation, Information technology, T58.5-58.64
Big Data, remote sensing, deep learning, deforestation, ensemble learning, plantation, Information technology, T58.5-58.64
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |