Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pure Utrecht Univers...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pure Utrecht University
Doctoral thesis . 2022
License: CC BY ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.33540/458...
Doctoral thesis . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Playdough for Chemists

Transformative cadmium and lead chalcogenide nanoplatelets and quantum rings
Authors: Salzmann, Bastiaan Berend Valentin;

Playdough for Chemists

Abstract

Semiconducting nanocrystals show light absorption and emission spectrally dependent on their size and shape. Extensive research in the past decades has resulted in numerous wet-chemical synthesis routes yielding nanocrystals with different shapes, accompanied by new properties. For example, pseudo-spherical dots, nanowires and nanoplatelets have been reported with a different number of dimensions in which quantum confinement takes place. The aim of this thesis is to prepare new shapes and compositions of semiconducting cadmium and lead chalcogenide nanocrystals, and to investigate their shape and optical properties with electron microscopy and optical spectroscopy. For example, we study the conversion of CdSe nanoplatelets into quantum rings and reveal their opto-electronical properties. Furthermore, we study the conversion of CdSe NPLs into two-dimensional CdSe-PbSe heterostructures and PbSe nanoplatelets by Pb2+-for-Cd2+ cation exchange, and examine the crystallinity and formation mechanism of PbS nanosheets.

Country
Netherlands
Related Organizations
Keywords

colloidal nanocrystals, optical spectroscopy, luminescent materials, optoelectronics, electron microscopy, semiconductor, electron microscopy, optoelectronics, luminescent materials, colloidal nanocrystals, semiconductor, optical spectroscopy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green