Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Luminescent Nanocrystals

Line broadening and formation mechanisms
Authors: Johanna Cornelia van der Bok;

Luminescent Nanocrystals

Abstract

Nanomaterials have become an increasingly important class of materials in the past decades due to their size-tunable optical, electronic, and magnetic properties. Nanomaterials are not only of great scientific interest, but their versatility has also resulted in a wide range of applica¬tions. This thesis focuses on two types of luminescent (light-emitting) nanomaterials, cadmium chalcogenide nanocrystals (NCs) and NaYF4 NCs doped with rare earth ions (lanthanides, e.g., erbium and ytterbium). Both the optical properties and nanocrystal growth mechanisms are investigated. Semiconductor NCs, especially CdSe nanoplatelets (NPLs), exhibit narrow emission bands in the visible part of the spectrum, a property needed for more efficient white light LEDs (w-LEDs) and vibrant displays. In these applications, the luminescent materials operate at elevated tem¬peratures, which affects the emission linewidth. Insight into this thermal broadening is important for application in w-LEDs but has so far not been investigated over a temperature range that is relevant for these applications. In this thesis, I report on the temperature-dependent spectral linewidth of cadmium chalcogenide NPLs and QDs. NaYF4 NCs doped with lanthanide ions are efficient upconversion materials that can convert two low-energy infrared photons to one high-energy visible photon. These materials can be used in deep-tissue imaging and to enhance the efficiency of solar cells. The formation mechanism of both NaYF4 NCs and CdSe NPLs is still debated. Control over the NC growth is essential to adjust the NC properties. In this thesis, I report on the mechanisms of their nucleation and growth, monitored using in situ absorption and x-ray scattering techniques.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?