<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The contracting boundary of a proper geodesic metric space generalizes the Gromov boundary of a hyperbolic space. It consists of contracting geodesics up to bounded Hausdorff distances. Another generalization of the Gromov boundary is the \(\kappa\)–Morse boundary with a sublinear function \(\kappa\). The two generalizations model the Gromov boundary based on different characteristics of geodesics in Gromov hyperbolic spaces. It was suspected that the \(\kappa\)–Morse boundary contains the contracting boundary. We will prove this conjecture: when \(\kappa =1\) is the constant function, the 1-Morse boundary and the contracting boundary are equivalent as topological spaces.
Mathematics - Geometric Topology, 51F30, 20F65, Mathematics - Metric Geometry, Morse Boundary, Sublinearly Morse, Hyperbolic, FOS: Mathematics, Geometric Topology (math.GT), Metric Geometry (math.MG)
Mathematics - Geometric Topology, 51F30, 20F65, Mathematics - Metric Geometry, Morse Boundary, Sublinearly Morse, Hyperbolic, FOS: Mathematics, Geometric Topology (math.GT), Metric Geometry (math.MG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |