
We define the concept of a spectrally compact operator, and study the basic properties of these operators. We show that the class of spectrally compact operators is strictly contained in the class of compact operators and in the class of spectrally bounded operators. It is also proved that the set of spectrally compact operators on a spectrally normed space $E$ is a right ideal of $\mathrm{SB}(E)$ and in certain cases it is a two sided ideal. We will also study the spectral adjoint of a spectrally compact operator.
spectrally normed space, 46B99, 47L10, spectrally bounded operator, 47B48, spectrally compact operator
spectrally normed space, 46B99, 47L10, spectrally bounded operator, 47B48, spectrally compact operator
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
