Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Compositionalityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Compositionality
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Episciences
Article . 2023
License: CC BY
Data sources: Episciences
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

Traced Monads and Hopf Monads

Authors: Masahito Hasegawa; Jean-Simon Pacaud Lemay;

Traced Monads and Hopf Monads

Abstract

A traced monad is a monad on a traced symmetric monoidal category that lifts the traced symmetric monoidal structure to its Eilenberg-Moore category. A long-standing question has been to provide a characterization of traced monads without explicitly mentioning the Eilenberg-Moore category. On the other hand, a symmetric Hopf monad is a symmetric bimonad whose fusion operators are invertible. For compact closed categories, symmetric Hopf monads are precisely the kind of monads that lift the compact closed structure to their Eilenberg-Moore categories. Since compact closed categories and traced symmetric monoidal categories are closely related, it is a natural question to ask what is the relationship between Hopf monads and traced monads. In this paper, we introduce trace-coherent Hopf monads on traced monoidal categories, which can be characterized without mentioning the Eilenberg-Moore category. The main theorem of this paper is that a symmetric Hopf monad is a traced monad if and only if it is a trace-coherent Hopf monad. We provide many examples of trace-coherent Hopf monads, such as those induced by cocommutative Hopf algebras or any symmetric Hopf monad on a compact closed category. We also explain how for traced Cartesian monoidal categories, trace-coherent Hopf monads can be expressed using the Conway operator, while for traced coCartesian monoidal categories, any trace-coherent Hopf monad is an idempotent monad. We also provide separating examples of traced monads that are not Hopf monads, as well as symmetric Hopf monads that are not trace-coherent.

Keywords

FOS: Mathematics, Mathematics - Category Theory, Category Theory (math.CT), 18M10, 18C15, 18C20, 16T05, 16D90

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold