Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of fibrous cap stresses on vulnerable plaques leading to heart attacks

Authors: Yung-Chi Chen; Yi-Yu Wu; Yu-Han Cheng; Hao-Ming Hsiao; Bo-Chian Tsai;

Investigation of fibrous cap stresses on vulnerable plaques leading to heart attacks

Abstract

Rupture-prone plaques in the coronary arteries, called ``vulnerable plaques'', are recognized as the key factor in acute myocardial infarction. Vulnerable plaques have a thin fibrous cap over a large fatty core and are highly susceptible to rupture. In general, this type of plaque rupture is mainly associated with stress concentrated on the fibrous cap. Fibrous cap stresses are counted among the most important factors in the plaque rupture process and must be taken into consideration when assessing the plaque vulnerability leading to heart attacks. The objective of this paper was to investigate the effects of nitinol stent deployment on the morphological changes of vulnerable plaques and then to propose a new stent design concept for effectively reducing fibrous cap stresses and the associated rupture risk. The deployment of a self-expanding nitinol stent was modeled, and the resulting stress distribution on the fibrous cap was investigated. The fibrous cap stresses were more uniformly distributed and the maximum stress was reduced by 13% when the crown number of the stent was increased. This study demonstrates an excellent approach to stent design that could effectively reduce the risk of a vulnerable plaque rupturing and causing a heart attack.

Keywords

Alloys, Myocardial Infarction, Humans, Stents, Equipment Design, Stress, Mechanical, Plaque, Atherosclerotic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?