
doi: 10.3233/fi-2020-1928
handle: 11454/62949
A set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. the disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. in this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number.
subdivision, disjunctive total domination, domination
subdivision, disjunctive total domination, domination
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
