Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.3233/atde21...
Part of book or chapter of book . 2021 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://ebooks.iospress.nl/pdf...
Part of book or chapter of book
License: CC BY NC
Data sources: UnpayWall
Université Grenoble Alpes: HAL
Part of book or chapter of book . 2021
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A model for Manufacturing Large Parts with WAAM Technology

Authors: Vo, Thanh Hoang; Grandvallet, Christelle; Vignat, Frédéric;

A model for Manufacturing Large Parts with WAAM Technology

Abstract

Wire Arc Additive Manufacturing (WAAM) is a metallic additive manufacturing process based on the fusion of metallic wire using an electric arc as a heat source. The challenge associated with WAAM is heat management and understanding bead geometry. The printing process involves high temperatures, which results in the build-up of residual stresses can often cause deformations in a component. All of the process variables, such as torch speed (TS), wire feed speed (WFS), idle time, combine to produce the geometry of the deposit bead that results in the desired component shape. So, determining a method for choosing a good combined parameter process is very important to obtain a high-quality part. This article presents a study on how to use the WAAM process to produce a complexity part of aluminium alloys. The step of the determination process parameter is concentrated to develop in this study. An experimental design is determined to study the influence between the process parameters, for example, WFS, TS, high layer, length of bead. Different samples are made using the Yaskawa robot, using the classic CMT (Cold Metal Transfer) as a manufacturing method, using zigzag filling as a manufacturing strategy with the same WFS and same idle times and different TS, different bead lengths. A new manufacturing method using the zigzag filling strategy is proposed by adding an important step in determining the process parameters. The results indicate that the length of the bead has a significant impact on another parameter of the process.

Country
France
Keywords

[SPI]Engineering Sciences [physics], 600, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold