Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Asymptotic Analysisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Asymptotic Analysis
Article . 2011
Data sources: mEDRA
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global attractors for a vegetation model

Authors: Goto, Yukie;

Global attractors for a vegetation model

Abstract

In this article, a rigorous mathematical treatment of the dryland vegetation model introduced by Gilad et al. [Phys. Rev. Lett. 98(9) (2004), 098105-1–098105-4, J. Theoret. Biol. 244 (2007), 680–691] is presented. We prove the existence and uniqueness of solutions in (L1(Ω))3 and the existence of global attractors in L1(Ω;𝒟), where 𝒟 is an invariant region for the system. A key step is the regularization of the model by adding εΔ to the diffusion term and by approximating the initial data U0 by a sequence {U0,n} of smooth functions in (L1(Ω))3. The various a priori estimates and the maximum principle permit the passage to the limit as ε→0 and n→∞, proving the existence and uniqueness of solutions U in the specified space. Also, we deduce from the a priori estimates that the solution meets the necessary hypotheses (see Theorem 1.1 in Chapter 1 of Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1997) and hence, we obtain the existence of global attractors.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!