Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Emerging Infectious ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Emerging Infectious Diseases
Article . 2005 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Emerging Infectious Diseases
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2005
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Emerging Infectious Diseases
Article . 2005
Data sources: DOAJ
versions View all 4 versions
addClaim

Carbapenemase-producingEnterobacteriaceae, U.S. Rivers

Authors: Cécile Aubron; Laurent Poirel; Ronald J Ash; Patrice Nordmann;

Carbapenemase-producingEnterobacteriaceae, U.S. Rivers

Abstract

Our study was initiated by previous isolation of 30 imipenem-resistant, gram-negative rods from 7 of 16 U.S. rivers sampled from 1999 to 2001. Imipenem hydrolysis was detected in 22 of those isolates identified as Enterobacter asburiae. Random amplified polymorphism DNA analysis showed that these E. asburiae isolates were genetically indistinguishable. An identical clavulanic acid-inhibited beta-lactamase IMI-2 was identified from each isolate that shared 99% and 97% amino acid identity with the chromosome-encoded beta-lactamases IMI-1 and NmcA, respectively, from E. cloacae clinical isolates. The blaIMI-2 gene was located on a self-transferable 66-kb plasmid. Sequence analysis of a cloned 5.5-kb DNA fragment obtained from 1 of the imipenem-resistant E. asburiae isolates identified an upstream LysR-type regulator gene that explained inducibility of IMI-2 expression. beta-Lactamase IMI-2 is the first inducible and plasmid-encoded carbapenemase. Identification of clonally related E. asburiae isolates from distant rivers indicates an environmental and enterobacterial reservoir for carbapenemase genes.

Related Organizations
Keywords

DNA, Bacterial, Infectious and parasitic diseases, RC109-216, Microbial Sensitivity Tests, Polymerase Chain Reaction, beta-Lactamases, resistance, Bacterial Proteins, Enterobacteriaceae, Rivers, Drug Resistance, Bacterial, research, Research, R, Sequence Analysis, DNA, United States, Random Amplified Polymorphic DNA Technique, Blotting, Southern, Carbapenems, Medicine, beta-Lactamase Inhibitors, beta-lactamase, environment, imipenem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 1%
Top 1%
Top 10%
Green
gold