Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Avrupa Bilim ve Tekn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Avrupa Bilim ve Teknoloji Dergisi
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Designing, Modeling and Simulation of Solid Fuel Rocket ALP-01

Authors: BİLGİÇ, Hasan Hüseyin; ÇOBAN, Sezer; YAPICI, Ahmet;

Designing, Modeling and Simulation of Solid Fuel Rocket ALP-01

Abstract

In this study the design of solid-fuel low-altitude rocket ALP-01 CAD has been optimized for the selected engine of rocket sizes for an altitude of 1500 meters. Parabolic type was preferred as the cone geometry. The length is calculated as 35cm. 3D printer for nose cone and shoulder section will be prepared by hand and made from glass fiber by hand method. Two different rescue mechanisms have been used in our rocket. CO 2 tube discharge mechanism was used for the removal of the nose cone, payload, payload parachute and the first parachute from the rocket. Payload has a flight computer with a telemetry system. This computer instantly transmits location, altitude, temperature and humidity information to the ground station. There are GPS and telemetry systems in all parts of our rocket. The production of composite parts with cylindrical cross-section was performed and positive results were obtained in the composite workshop of the Mechanical Engineering Laboratory of Iskenderun Technical University. As a result of Openrocket simulations as a wing geometry, delta-type flaps were considered suitable. Furthermore, it is planned to participate in Teknofest 2019 rocket competition with ALP-01 solid fuel rocket which is planned to be designed and produced. Four times solid-fuel rocket engine trials, two of which were static tests, were conducted in the study stages. The fuel mixture used in the experiments (KNO3Sukroz / Dextrose) is located in the Mechanical Engineering Laboratory of Iskenderun Technical University.

Country
Turkey
Related Organizations
Keywords

Kati Yakıtlı Roket;Tasarım;Modelleme, Engineering, Design, Solid fuel rocket, Mühendislik, Modeling, Solid Fuel Rocket;Design;Modeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold