Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in the Theo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Multilevel Evaluation of the General Dirichlet Series

Authors: Iyad SUWAN;

Multilevel Evaluation of the General Dirichlet Series

Abstract

In this Study, an accurate method for summing the general Dirichlet series is presented. Long range terms of this series are calculated by a multilevel approach. The Dirichlet series, in this technique, is decomposed into two parts, a local part and a smooth part. The local part vanishes beyond some cut off distance, "$r_0$", and it can be cheaply computed . The complexity of calculations depends on $r_0$. The smooth part is calculated on a sequence of grids with increasing meshsize. Treating the smooth part using multilevels of grid points overcomes the high cost of calculating the long range terms. A high accuracy in approximating the smooth part is obtained with the same complexity of computing the local part. The method is tested on the Riemann Zeta function. Since there is no closed form for this function with odd integer orders, the method is applied for orders $s= 3, 5, 7,$ and $9$. In comparison with the direct calculations, remarkable results are obtained for $s=3$ and $s=5$; the reason is the major effect of the long range terms. For $s=7,$ and $s=9$, results obtained are better than those of direct calculations. The method is compared with efficient well known methods. The comparison shows the superiority of the multilevel method.

Related Organizations
Keywords

Matematik, Dirichlet series;Riemann Zeta function;Multilevel evaluation;Local part;Smooth part, Mathematical Sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold