Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MODELING ACTIVITY RHYTHMS IN FIDDLER CRABS

Authors: Caz M. Taylor; Rebecca Honeyfield; Diana W. Verzi; Christopher J. Dugaw;

MODELING ACTIVITY RHYTHMS IN FIDDLER CRABS

Abstract

Burrowing crabs of the genus Uca inhabit tidal mudflats and beaches. They feed actively during low tide and remain in their burrows when the tide is high. The timing of this activity has been shown to persist in the absence of external light and tidal cues, indicating the presence of an internal timing mechanism. Researchers report the persistence of several variations in locomotor activity under laboratory conditions that cannot be explained by a single circatidal clock. Previous studies supported two alternative hypotheses: the presence of either two circalunidian clocks, or a circadian and circatidal clock to regulate these activity rhythms. In this paper, we formulate mathematical models to describe and test these hypotheses. The models suggested by the literature contain some important differences beyond the frequency of proposed clocks, and these are reflected in the mathematical formulations and simulation results. One hypothesis suggests independent phase oscillators, while the other hypothesis suggests that they are coupled in anti-phase. Neither model is able to recover all of the variations in locomotor acitivity observed under laboratory conditions. However, we propose a new model that incorporates aspects of both existing hypotheses and is able to reproduce all laboratory observations.

Keywords

Activity Cycles, Brachyura, Animals, Computer Simulation, Mathematical Concepts, Motor Activity, Models, Biological, Circadian Rhythm

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!