
By using modulus functions we introduce a new concept of density for sets of natural numbers. Consequently, we obtain a generalization of the notion of statistical convergence which is studied and characterized. As an application, we prove that the ordinary convergence is equivalent to the module statistical convergence for every unbounded modulus function.Keywords: Density, modulus function, statistical convergence.Quaestiones Mathematicae 37(2014), 525-530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
