
handle: 10576/16590
Novel integrated solar cooling and solar distillation system is introduced to meet the high cooling and fresh water demands in hot and arid regions such as Qatar. The system is composed of a solardriven ejector cooling system coupled with a single-slope solar still. The introduced novel system is the first study that integrates two solar systems for cooling and water production with outputs significantly higher than any existing system. The results show that the productivity of the solar still is improved by enhancing the evaporation rate (using heating coil) and by increasing the condensation rate (using cooling coil). Simultaneously, this improved the COP of the ejector system by increasing its entrainment ratio with a slight increase in the required solar collector area. The performance of four different scenarios of integration between the proposed cooling and distillation systems is investigated. The results showed that the productivity of the still is five times higher than that of the conventional solar still. The annual produced water considering the hourly variation of the radiant flux was 5067 kg/year, which is 5.7 times more than the conventional systems. The estimated cost of one-liter distilled water per 1 m2 area of the present solar still is $0.04, which is only 18% of the water cost of other still technologies.
Integrated Solar Cooling; Solar Distillation; Ejector; Solar Still; Evaporation; COP
Integrated Solar Cooling; Solar Distillation; Ejector; Solar Still; Evaporation; COP
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
