
handle: 11449/217478 , 11449/234300
Factorial designs have been increasingly used in scientific investigations and technological development. The designs, through the use of matrices with all the treatment combinations, have been capable to effectively characterize the relationships between the variables of multi-factor experiments, assess the experimental variabilities, and derive mathematical functions that represent the behavior of the responses. Factorial designs were fractionalized, which substantially reduced the number of treatments without the loss of relevant information. The addition of central and star points to the factorial arrays has given them the orthogonality and rotatability characteristics, frequently used to fit models with curvature and identify critical regions of interest. Literature reports indicated that factorial designs, also called factorial experiments, were successfully applied in different types of investigations, including in cost evaluations and time-series studies. They were capable to estimate important features of the experiments, like the individual and combined effects of factors, the magnitude of residuals, additionally to express the relationships of the variables in polynomial equations, draw response surface and contour plots, and determine optimal combinations of parameters. In this review, the fundamental aspects of the Complete, Fractional, Central Composite Rotational and Asymmetrical factorial designs were conceptualized, and recent applications of these powerful tools were described.
statistical plan, Design of experiment, statistical model, Experimental planning, Statistical plan, research design, 310, experimental planning, Research design, process optimization, DOE, Statistical model, Process optimization
statistical plan, Design of experiment, statistical model, Experimental planning, Statistical plan, research design, 310, experimental planning, Research design, process optimization, DOE, Statistical model, Process optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
