
Let $\sigma$ be an operator mean and $f$ a non-constant operator monotone function on $(0,\infty)$ associated with $\sigma$. If operators $A, B$ satisfy $0\le A \le B$, then it holds that $Y \sigma (tA+X) \le Y \sigma (tB+X)$ for any non-negative real number $t$ and any positive, invertible operators $X,Y$. We show that the condition $ Y \sigma (tA+X) \le Y \sigma (tB+X)$ for a sufficiently small $t>0$ implies $A \le B$ if and only if $X$ is a positive scalar multiple of $Y$ or the associated operator monotone function $f$ with $\sigma$ has the form $f(t) = (at+b)/(ct+d)$, where $a,b,c,d$ are real numbers satisfying $ad-bc>0$.
Fréchet derivative, 15A39, Matrix order, operator mean, 47A63, Schur product, operator monotone function
Fréchet derivative, 15A39, Matrix order, operator mean, 47A63, Schur product, operator monotone function
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
