Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KLUEDO - Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.26204/kl...
Doctoral thesis . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

Characterisation of Aphanomyces astaci’s virulence: from phenotype to genome

Authors: Francesconi, Caterina;

Characterisation of Aphanomyces astaci’s virulence: from phenotype to genome

Abstract

European crayfish species are considered keystone in freshwater ecosystems. As such, their conservation is of paramount importance to prevent biodiversity decline and loss of ecosystem function. Unfortunately, today, European crayfish species are among the most threatened crayfish species worldwide. An especially relevant threat is represented by the invasive pathogen Aphanomyces astaci. This oomycete, native of North America, has been one of the main causes of crayfish population declines across Europe since its first introduction 150 years ago, to the point of causing the local extinction of many populations. Over the years, several introductions of A. astaci strains into Europe took place through translocation of infected North American crayfish, and were followed by mass mortalities across European crayfish populations. However, in the past 20 years, more and more reports emerged of European crayfish populations surviving A. astaci infections or being latently infected with the pathogen. The survival of infected crayfish can be ascribed to both increased resistance of some crayfish populations and decreased virulence of some A. astaci strains. As the relationship between host and pathogen in Europe is changing, it is imperative to gain insights on what shapes these changes to understand the implications for the long-term coexistence of crayfish and A. astaci in Europe. With this thesis, I focused on the virulence of A. astaci, looking for mechanisms, patterns and determinants underlying the pathogen’s virulence variability. In particular, by characterising the virulence of several A. astaci strains, I identified two possible different mechanisms of loss of virulence. I revealed that A. astaci’s virulence variability is not linked to variation of in vitro growth and sporulation, traits classically associated with a pathogen’s virulence. Based on these results, I suggest that the pathogen’s virulence determinants are likely its “virulence effectors”, of which A. astaci genome is enriched. Additionally, with the present work I provided transcriptomic evidence of coevolution between A. astaci and European crayfish. I showed that the haplogroups based on the canonical mitochondrial markers, often used to assess A. astaci’s virulence to inform management actions, do not differ for some of their characterising phenotypical traits, including virulence. Finally, after experimental characterisation of virulence and assessment of its likely phenotypical determinants, i.e., sporulation and growth, the next and more comprehensive step to study the pathogen’s virulence is through genomic approaches. To this aim, I provided key data for future comparative genomic studies, i.e., highly complete genome assemblies based on Nanopore (3) and Illumina reads (11). These data can be exploited in several ways, from building a pangenome of the species to a genome-wide association study (GWAS), that can offer a much deeper understanding of A. astaci’s virulence and adaptability. In particular, the identification of the loci associated with virulence through a GWAS has the potential to be revolutionary for the management of A. astaci, as it can become the basis to create a genomic tool to quickly and accurately assess the virulence of newly introduced strains, directing management actions towards the more dangerous strains.

Country
Germany
Related Organizations
Keywords

580, ddc:500, 500, 500 Naturwissenschaften, ddc: ddc:500

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Italian National Biodiversity Future Center