Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Passive evaporative cooling towers

Authors: Stubbs, Lawrence;

Passive evaporative cooling towers

Abstract

This project investigates the performance of passive evaporative cooling towers in terms of cooling capacity, with the study focusing on understanding the geometric features that lead to high performance. Given the coupling of the governing equations and the lack of data available at low matrix Reynolds numbers, the performance is investigated from both a theoretical and experimental perspective. A model of the evaporative cooling tower is introduced and the governing equations are developed. An experimental program is formulated and a multivariable factorial analysis is used to investigate performance over a range of the independent variables. Established dimensionless parameters are used to investigate the heat and mass transfer in the matrix and correlations for the heat and mass transfer at low Reynolds number are derived from experimental measurements. The pressure loss in the system is investigated and it is shown that at low Reynolds numbers the pressure loss in the matrix is insignificant in comparison with the loss due to friction in the tower. It is also shown that the geometry of the tower significantly impacts on performance, with the tower height, diameter and matrix frontal area being significant v parameters. A figure of merit is introduced that allows the performance of towers to be compared. Through controlled experiments, the significant transient effects of wind, feedwater flow rate, and tower outlet geometry variation are investigated. It is shown that wind may significantly affect performance if not managed appropriately. It is also demonstrated that varying the feedwater flow rate or the geometry of the tower outlet may influence the performance of a tower.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!