Downloads provided by UsageCounts
A Bayesian procedure, which allows consideration of the individual variation in the feed resource allocation pattern, is described and implemented in 2 sire lines of rabbit (Caldes and R). The procedure is based on a hierarchical Bayesian scheme, where the first stage of the model consists of a multiple regression model of feed intake on metabolic BW and BW gain. In a second stage, an animal model was assumed including batch, parity order, litter size, and common environmental litter effects. Animals were reared during the fattening period (from weaning at 32 d of age to 60 d of age) in individual cages on an experimental farm, and were fed ad libitum with a commercial diet. Body weight (g) and cumulative feed intake (g) were recorded weekly. Individual BW gain (g) and average BW (ABW, g) were calculated from these data for each 7-d period. Metabolic BW (g(0.75)) was estimated as ABW(0.75). The number of animals actually measured was 444 and 445 in the Caldes and R lines, respectively. Marginal posterior distributions of the genetic parameters were obtained by Gibbs sampling. Posterior means (posterior SD) for heritabilities for partial coefficients of regression of feed intake on metabolic BW and feed intake on BW gain were estimated to be 0.35 (0.17) and 0.40 (0.17), respectively, in the Caldes line and 0.26 (0.19) and 0.27 (0.14), respectively, in line R. The estimated posterior means (posterior SD) for the proportion of the phenotypic variance due to common litter environmental effects of the same coefficients of regression were respectively, 0.39 (0.14) and 0.28 (0.13) in the Caldes line and 0.44 (0.22) and 0.49 (0.14) in line R. These results suggest that efficiency of use of feed resources could be improved by including these coefficients in an index of selection.
Male, Litter Size, Feed efficiency, Bayesian analysis, Rabbit, PRODUCCION ANIMAL, Weight Gain, Models, Biological, Eating, Pregnancy, Animals, Selection, Genetic, Selection, Models, Genetic, Bayes Theorem, Animal Feed, Parity, Female, Rabbits
Male, Litter Size, Feed efficiency, Bayesian analysis, Rabbit, PRODUCCION ANIMAL, Weight Gain, Models, Biological, Eating, Pregnancy, Animals, Selection, Genetic, Selection, Models, Genetic, Bayes Theorem, Animal Feed, Parity, Female, Rabbits
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 47 | |
| downloads | 86 |

Views provided by UsageCounts
Downloads provided by UsageCounts