Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environment Control ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environment Control in Biology
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Chlorophyll Fluorescence Imaging of the Chlorophyll Fluorescence Induction Phenomenon for Plant Health Monitoring

Authors: Kotaro TAKAYAMA; Hiroshige NISHINA;

Chlorophyll Fluorescence Imaging of the Chlorophyll Fluorescence Induction Phenomenon for Plant Health Monitoring

Abstract

Chlorophyll fluorescence imaging is useful as a non-destructive method for evaluating photosynthetic function of plants. A dynamic change in chlorophyll fluorescence intensity, known as the chlorophyll fluorescence induction phenomenon, can be observed by illuminating a dark-adapted green leaf with a stable intensity excitation light. The time course of the chlorophyll fluorescence intensity during this phenomenon, presented as an induction curve, varies depending on the health of the plant. Imaging of the chlorophyll fluorescence induction phenomenon may be used to monitor the health status of plants. In this review, we introduce studies on our chlorophyll fluorescence imaging system for plant health monitoring of tomato crops grown in a greenhouse. We first developed a prototype of the imaging system to confirm performance on detection of artificially induced light stress in a single leaf and whole plant. Based on the successful detection of photosynthetic dysfunction caused by light stress using the prototype, we applied our chlorophyll fluorescence imaging system to measurements of the chlorophyll fluorescence induction curves of tomato crops grown in a semi-commercial greenhouse. Upon comparing the induction curves of 20 tomato crops planted on a north-south lane in the greenhouse, we found two plants with unique induction curve patterns. One of these two plants showed visible symptoms of physiological dysfunction 7 days after measurement. Thus, our chlorophyll fluorescence imaging system appears to be a useful tool for plant health monitoring in horticultural production.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average
gold