Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Concepts in Gas Compressor Station Configuration

Authors: Rainer Kurz; Matt Lubomirsky;

Concepts in Gas Compressor Station Configuration

Abstract

Abstract The number of compressors installed in each compressor station of a pipeline system, as well as their arrangement, has a significant impact on the availability, fuel consumption and capacity of the system. This paper discusses the impact of the type and arrangement of turbomachinery equipment used in compressor stations. Introduction The economic success of a gas compression operation depends to a significant extent on the operation of the compressors involved. Important criteria include first cost, operating cost (especially fuel cost), life cycle cost, and emissions. Decisions about the layout of compressor stations (Figure 1) such as the number of units, standby requirements, type of driver, and type of compressors have an impact on cost, fuel consumption, operational flexibility, emissions, as well as availability of the station. Capital Cost: First Cost and Installation Cost Capital cost for a project consists of first cost and installation cost. First cost not only includes the cost for the driver and compressor, and their skid or foundation, but also the necessary systems that are required for operating them, including filters, coolers, instruments, and valves, and, if reciprocating compressors are used, pulsation bottles. Although not intuitively obvious, this is also the area that is affected by driver derates due to site ambient temperature and site elevation: The power demand of the compressor has to be met at site conditions, not at ISO or NEMA conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!