Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://power.eecs.be...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2514/6.2008...
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Phase Stirling Engines

Authors: Artin Der Minassians; Seth Sanders;

Multi-Phase Stirling Engines

Abstract

Mathematical modeling of multi-phase Stirling engine systems is presented in this paper. A detailed modal analysis is discussed for a symmetric three-phase system based on the corresponding linearization. This analysis proves the self-starting potential of multiphase Stirling engine systems relying on the theory of nonlinear systems. The start-up temperature of a three-phase Stirling engine example system is derived based on the same modal analysis. The operation of a low-temperature three-phase Stirling engine prototype is discussed based on the developed theory and the internal dissipation of the engine chambers. This discussion reveals the signiflcance of the gas spring hysteresis phenomenon in low-power Stirling engine designs. Further analysis shows that the gas hysteresis dissipation is reduced drastically by increasing the number of phases in a multi-phase Stirling engine system. It is shown that for an even number of phases, half of the engine chambers can be eliminated by utilizing a reversing mechanism within the multi-phase system. The mathematical formulation and modal analysis of multi-phase Stirling engine system is then extended to a system that incorporates a reverser. By introducing a reverser to the fabricated prototype, the experimental system successfully self-starts and operates in engine mode. The system thus proves its self-starting capability and validates the technique for computation of start-up temperature.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Top 10%
Average
Related to Research communities