Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transonic low-Reynolds number airfoils

Authors: MARK DRELA;

Transonic low-Reynolds number airfoils

Abstract

Airfoils operating in the unexplored high-Mach—low-Reynolds number regime are computationally investigated. The motivations are 1) quantificatio n of achievable airfoil performance levels; 2) quantificatio n of parameter sensitivities which impact vehicle sizing; 3) identification of possible shortcomings in the computational methods employed; and 4) identification of test data required for adequate validation of the airfoil designs and performance prediction methods. The investigation centers on candidate airfoils developed for proposed ultrahigh altitude aircraft (UHAA) having both a high-ceiling and a long-range requirement. Computational studies indicate that 35-km ceiling performance at M — 0.60, Re — 200,000 hinges on the effective use of transonic flow to enhance transition and reduce separation-bubble losses. The separation bubbles become associated with large lambda shock structures at the highest tolerable Mach numbers. Airfoil performance predictions are parameterized by quantities dependent only on altitude and vehicle characteristics, and independent of flight trim conditions. For the airfoils designed, no flaps are necessary to achieve nearly optimal performance at both 35-km ceiling conditions as well as lower 15-25-km altitudes where long-range cruise would occur. Variation in airfoil thickness between 11-15% has surprisingly little impact on aerodynamic performance.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!