Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Propulsio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Propulsion and Power
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Suppressing Restricted Shock Separation in a Subscale Rocket Nozzle Using Contour Geometry

Authors: Schomberg, K.; Olsen, J.; Neely, A. J.; Doig, Graham;

Suppressing Restricted Shock Separation in a Subscale Rocket Nozzle Using Contour Geometry

Abstract

The use of a thrust-optimized contour (TOC) for the supersonic nozzle in a rocket engine will inherently maximize the propulsive efficiency and payload capacity of the entire launch system. A TOC can be approximated using a skewed parabola, commonly referred to as a thrust-optimized parabola (TOP), and the TOP contour can be manipulated to avoid undesirable flow separation during low-altitude operation by increasing the static wall pressure at the expense of thrust (approximately 0.1 0.2%). For this reason, a TOP design is often used in nozzles with a high area ratio, such as those used in the Vulcain and Vulcain 2 corestage engines, and suggests that ensuring full-flowing operation at low-altitude conditions can be considered a nozzle design requirement. Unfortunately, any thrust-optimized nozzle may excite an undesirable shift between a free shock separation (FSS) and restricted shock separation (RSS) mode during engine startup and shutdown. The shift between an FSS and an RSS flowregimewas first noticed during operation of the high-area-ratio J2-S engine, and the RSS condition consequently was deemed responsible for inducing high structural loading to the nozzle walls. However, it was later found that the highest levels of side loading were, in fact, caused by the transition process to and from the RSS flow condition, as opposed to the RSS phenomenon itself. Because the precise flow mechanisms that drive the transition to and from the RSS condition are still not fully understood, the structural loading that occurs as a result of RSS appears to currently be accepted as a design consideration in core-stage rocket nozzles. A nozzle contour that was capable of suppressing the RSS flow condition itself would inherently prevent the transition to and from RSS and, therefore, decrease the structural loading that occurs during these transition phases. For a net benefit to be realized, the resulting nozzle must produce an equal or greater thrust coefficient compared to the existing design, as well as avoid flow ...

Country
United States
Related Organizations
Keywords

Aerospace Engineering, 600, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze