
The purpose of this paper is to illustrate the use of the Laguerre wavelet method in the solution of Troesch’s equation, which is a stiff nonlinear equation. The unknown function is approximated by Laguerre wavelets and the equation is transformed into a system of algebraic equations. One of the advantages of the method is that it does not require the linearization of the nonlinear term. The problem is solved for different values of Troesch’s parameter (μ) and the results are compared with both the analytical and other numerical results to validate the accuracy of the method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
