
New contents like blogs and online videos are produced in every second in the new media age. We argue that attraction is one of the decisive factors for user selection of new contents. However, collaborative filtering cannot work without user feedback; and the existing content-based recommender systems are ineligible to capture and interpret the attractive points on new contents. Accordingly, we propose attraction modeling to learn and interpret user attractiveness. Specially, we build a multilevel attraction model (MLAM) over the content features -- the story (textual data) and cast members (categorical data) of movies. In particular, we design multilevel personal filters to calculate users' attractiveness on words, sentences and cast members at different levels. The experimental results show the superiority of MLAM over the state-of-the-art methods. In addition, a case study is provided to demonstrate the interpretability of MLAM by visualizing user attractiveness on a movie.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
