Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.witpress....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2495/wm1803...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BATCH REACTOR PYROLYSIS OF STABILIZED SEWAGE SLUDGE: PRODUCT ANALYSIS AND SULPHUR BALANCE

Authors: Jaroslav Moško; Jaroslav Moško; Michael Pohořelý; Michael Pohořelý; Olga Bičáková; Karel Svoboda; Šárka Václavková; +3 Authors

BATCH REACTOR PYROLYSIS OF STABILIZED SEWAGE SLUDGE: PRODUCT ANALYSIS AND SULPHUR BALANCE

Abstract

Prior to sewage sludge application to agricultural soil, the sludge should be treated appropriately to suppress its negative features like content of microorganic pollutants or leaching heavy metals. Pyrolysis has been investigated as one way of producing sewage sludge-derived biochar (solid pyrolysis residue) which is stable and less toxic than sewage sludge. A significant amount of heat must be provided to the pyrolysis process due to its endothermic character. To make the process economically and energy efficient, the necessary heat can be obtained by the combustion of primary pyrolysis products (pyrolysis oil and gas), however in the case of sewage sludge, attention must be paid to the resulting gaseous pollutants due to high nitrogen and sulphur content. Slow pyrolysis of stabilized sewage sludge in inert helium atmosphere was performed at temperatures 400–800°C in order to examine the influence of pyrolysis temperature on the properties of pyrolysis products and sulphur\ndistribution amongst these products. Pyrolysis at higher temperatures resulted in lesser biochar yield and promoted gas yield. At temperatures of 500°C and higher, over 50% of energy bound in the input sewage sludge was transformed to liquid and gas products. Finally, the effect of pyrolysis temperature on sulphur distribution amongst pyrolysis products was only marginal.

Keywords

sewage sludge, sludge-derived biochar, pyrolysis, mass balance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze