
doi: 10.2495/wm180331
handle: 11104/0293314
Prior to sewage sludge application to agricultural soil, the sludge should be treated appropriately to suppress its negative features like content of microorganic pollutants or leaching heavy metals. Pyrolysis has been investigated as one way of producing sewage sludge-derived biochar (solid pyrolysis residue) which is stable and less toxic than sewage sludge. A significant amount of heat must be provided to the pyrolysis process due to its endothermic character. To make the process economically and energy efficient, the necessary heat can be obtained by the combustion of primary pyrolysis products (pyrolysis oil and gas), however in the case of sewage sludge, attention must be paid to the resulting gaseous pollutants due to high nitrogen and sulphur content. Slow pyrolysis of stabilized sewage sludge in inert helium atmosphere was performed at temperatures 400–800°C in order to examine the influence of pyrolysis temperature on the properties of pyrolysis products and sulphur\ndistribution amongst these products. Pyrolysis at higher temperatures resulted in lesser biochar yield and promoted gas yield. At temperatures of 500°C and higher, over 50% of energy bound in the input sewage sludge was transformed to liquid and gas products. Finally, the effect of pyrolysis temperature on sulphur distribution amongst pyrolysis products was only marginal.
sewage sludge, sludge-derived biochar, pyrolysis, mass balance
sewage sludge, sludge-derived biochar, pyrolysis, mass balance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
