
We consider a system of ordinary differential equations with infinite delay. We study large time dynamics in the phase space of functions with an exponentially decaying weight. The existence of an exponential attractor is proved under the abstract assumption that the right-hand side is Lipschitz continuous. The dimension of the attractor is explicitly estimated.
fractal dimension, 34k17, 37l25, exponential attractor, QA1-939, equations with infinite delay, 37l30, Mathematics
fractal dimension, 34k17, 37l25, exponential attractor, QA1-939, equations with infinite delay, 37l30, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
