
AbstractIn this paper we will compute the main parameters of the parameterized codes arising from cycles. In the case of odd cycles the corresponding codes are the evaluation codes associated to the projective torus and the results are well known. In the case of even cycles we will compute the length and the dimension of the corresponding codes and also we will find lower and upper bounds for the minimum distance of this kind of codes. In many cases our upper bound is sharper than the Singleton bound.
parameterized code, cycle, QA1-939, minimum distance, Mathematics
parameterized code, cycle, QA1-939, minimum distance, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
