
n this article we study quantitatively with rates the pointwise convergence of a sequence of positive sublinear operators to the unit operator over continuous functions. This takes place under low order smothness,less than one, of the approximated function and it is expressed via the left and right Riemann-Liouville fractional derivatives of it. The derived related inequalities in their right hand sides contain the moduli of continuity of these fractional derivatives and they are of Shisha-Mond type. We give applications to Bernstein Max-product operators and to positivesublinear comonotonic operators connecting them to Choquet integral.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
