
handle: 10362/113600
Nowadays the sustainability and safety requirements of structures inspire the study of new self healing materials and preventive repair methods on cementitious elements. To achieve this undertaking, this research replaces widely employed synthetic polymers by biodegradable ones as consolidants and water-repellents, and assesses the protection and consolidation effect of biopolymers (obtained by using waste biomass of mixed microbial cultures from polyhydroxyalkanoates production processes) as eco-friendly healing agents by analysing the water absorption of two kind of materials. The first group of samples are cement mortar specimens whose external surface has been treated with biopolymer products and subsequently evaluated by water drop absorption test. The second group of samples are cement mortar specimens formulated with biopolymer products included in its mixing water and later the waterproofing efficiency is analysed by capillary water absorption tests. The water absorption behaviour of both kind of samples shows a potential improvement of cementitious elements durability, since water absorption results have decreased for treated samples in comparison with untreated ones.
PTDC/EPH-PAT/4684/2014 IF/01054/2014/CP1224/CT0005 UID/QUI/50006/2019 UID/Multi/04378/2019 POCI-01-0145-FEDER-007728
Bioproducts, Self-healing, Cement Mortar., Polyhydroxyalknoates, Ingeniería forestal, Cement Mortar, Durability, Repair Methods, Ingeniería agrícola
Bioproducts, Self-healing, Cement Mortar., Polyhydroxyalknoates, Ingeniería forestal, Cement Mortar, Durability, Repair Methods, Ingeniería agrícola
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
