
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The terahertz (THz) frequency band (0.3-10THz) has the advantage of large available bandwidth and is a candidate to satisfy the ever increasing mobile traffic in wireless communications. However, the THz channels are often absorbed by molecules in the atmosphere, which can decrease the signal quality resulting in high bit error rate of received data. In this paper, we study the usage of systematic random linear network coding (sRLNC) for error correction in generic THz systems with with 2N parallel channels, whereby N main high-bitrate channels are used in parallel with N auxiliary channels with lower bit rate. The idea behind this approach is to use coded low-bit rate channels to carry redundant information from high-bit rate channels, and thus compensate for errors in THz transmission. The analytical results evaluate and compare the different scenarios of the THz system in term of the amount of coding redundancy, a code rate, transmission rate of auxiliary channels, the number of THz channels, the modulation format and transmission distance as required system configurations for a fault tolerant THz transmission.
6 pages, 5 figures
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, FOS: Electrical engineering, electronic engineering, information engineering, Distributed, Parallel, and Cluster Computing (cs.DC), Electrical Engineering and Systems Science - Signal Processing
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, FOS: Electrical engineering, electronic engineering, information engineering, Distributed, Parallel, and Cluster Computing (cs.DC), Electrical Engineering and Systems Science - Signal Processing
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
