
doi: 10.2307/3615171
In a recent paper [1], Victor Bryant shows how the number of axioms required to define a vector space can be reduced to seven (in addition to closure requirements). The main result of his article is that commutativity of addition can be deduced from the other axioms. In the present article we show how to reduce this number to six. For certain underlying fields one or more of these axioms can be deduced from the others. However, the six axioms are in general independent; we invite interested readers to show this by constructing their own counter-examples, which the editor of the Gazette will be pleased to receive.
Vector spaces, linear dependence, rank, lineability, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to linear algebra
Vector spaces, linear dependence, rank, lineability, Introductory exposition (textbooks, tutorial papers, etc.) pertaining to linear algebra
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
