
doi: 10.2307/3349966
pmid: 2974917
Official forecasts of mortality made by the U.S. Office of the Actuary throughout this century have consistently underestimated observed mortality declines. This is due, in part, to their reliance on the static extrapolation of past trends, an atheoretical statistical method that pays scant attention to the behavioral, medical, and social factors contributing to mortality change. A "multiple cause-delay model" more realistically portrays the effects on mortality of the presence of more favorable risk factors at the population level. Such revised assumptions produce large increases in forecasts of the size of the elderly population, and have a dramatic impact on related estimates of population morbidity, disability, and health care costs.
Persons with Disabilities, Models, Statistical, United States, Life Expectancy, Actuarial Analysis, Humans, Morbidity, Mortality, Forecasting
Persons with Disabilities, Models, Statistical, United States, Life Expectancy, Actuarial Analysis, Humans, Morbidity, Mortality, Forecasting
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
