
Stein's method of obtaining rates of convergence, well known in normal and Poisson approximation, is considered here in the context of approximation by Poisson point processes, rather than their one-dimensional distributions. A general technique is sketched, whereby the basic ingredients necessary for the application of Stein's method may be derived, and this is applied to a simple problem in Poisson point process approximation.
10123 Institute of Mathematics, 510 Mathematics
10123 Institute of Mathematics, 510 Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 126 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
