
Many phenomena studied in the social sciences and elsewhere are complexes of more or less independent characteristics which develop simultaneously. Such phenomena may often be realistically described by time-continuous finite Markov processes. In order to define such a model which will take care of all the relevant a priori information, there ought to be a way of defining a Markov process as a vector of components representing the various characteristics constituting the phenomenon such that the dependences between the characteristics are represented by explicit requirements on the Markov process, preferably on its infinitesimal generator.
probability theory
probability theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 81 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
