
Abstract Typically, analysis of data consisting of multiple observations on a cluster is complicated by within-cluster correlation. Estimating equations for generalized linear modeling of clustered data have recently received much attention. This article proposes an extension to the generalized estimating equation method proposed by Liang and Zeger, which treats within-cluster correlations as nuisance parameters. Using ideas from extended quasi-likelihood, estimating equations for regression and association parameters are provided simultaneously. The resulting estimators are proven to be asymptotically normal and consistent under certain conditions. The consistency of regression estimators allows incorrect modeling of the correlation among repeated responses. The method is illustrated with an analysis of data from a developmental toxicity study.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
