Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evolutionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evolution
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution
Article . 1990 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Evolution
Article . 1990 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Restriction Fragment Analysis of Pine Phylogeny

Authors: Steven H. Strauss; Allan H. Doerksen;

Restriction Fragment Analysis of Pine Phylogeny

Abstract

We used restriction fragment analysis of chloroplast, nuclear, and mitochondrial DNA to study phylogeny in the genus Pinus. Total genomic DNA of 18 to 19 pine species that spanned 14 of the 15 subsections in the genus was cut with 8 restriction enzymes, blotted, and then probed with up to 17 cloned DNA fragments-which were mostly from the chloroplast genome of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). A total of 116 shared characters, the majority representing single point mutations, were subjected to Wagner and Dollo parsimony analyses, coupled with bootstrapping and construction of consensus trees. The hard (subgenus Pinus) and soft pines (subgenus Strobus) were distinct. The soft pines in section Parrya, represented by P. longaeva, edulis, monophylla, and gerardiana, were the group closest to the hypothesized root of the genus. They were also more diverse and more closely related to the hard pines than were their descendents in section Strobus, represented by P. koraiensis, albicaulis, griffithii, and lambertiana, all of which were remarkably similar. Except for a strong clade involving P. canariensis and pinea (section Ternatae), the hard pines were weakly differentiated. The high similarity within the most speciose groups of pines (sections Strobus and Pinus) suggests that the bulk of the genus radiated relatively recently. In contrast to a recent classification, P. leiophylla was not associated with section Ternatae; instead, it appears to belong in section Pinus, and showed a high similarity to P. taeda of subsection Australes. Subsection Oocarpae, represented by P. oocarpa and radiata, appears to be a natural group, and is related to subsection Contortae, represented by P. contorta. More extensive restriction fragment studies will yield many new insights into evolution in the genus. Other methods, however, such as DNA sequencing or fine structure analysis of restriction site mutations, are likely to be necessary for rooting pine phylogenies with respect to other coniferous genera, and for estimating divergence times.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
bronze