Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Symbolic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Symbolic Logic
Article . 1992 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Combinatorics on large cardinals

Authors: Carlos H. Montenegro E.;

Combinatorics on large cardinals

Abstract

Our framework is ZFC, and we view cardinals as initial ordinals. Baumgartner ([Bal] and [Ba2]) studied properties of large cardinals by considering these properties as properties of normal ideals and not as properties of cardinals alone. In this paper we study these combinatorial properties by defining operations which take as input one or more ideals and give as output an ideal associated with a large cardinal property. We consider four operations T, P, S and C on ideals of a regular cardinal κ, and study the structure of the collection of subsets they give, and the relationships between them.The operation T is defined using combinatorial properties based on trees 〈X, <T〉 on subsets X ⊆ κ (where α <T β → α < β). Given an ideal I, consider the property *: “every tree on κ with every branching set in I has a branch of size κ” (where a branching set is a maximal set with the same set of <T-predecessors, and a chain is a maximal <T-linearly ordered set; for definitions see §2). Now consider the collection T(I) of all subsets of κ that do not satisfy * (see Definition 2.2 and the introduction to §5). The operation T provides us with the large cardinal property (whether κ ∈ T(I) or not) and it also provides us with the ideal associated with this large cardinal property (namely T(I)); in general, we obtain different notions depending on the ideal I.

Related Organizations
Keywords

Large cardinals, partition relation, ineffable sets, ideals, tree property, subtle sets, Other combinatorial set theory, \(\Pi_ 1^ 1\)-indescribable sets

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!